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BROADENING OF SPECTRAL LINES IN A HOMOGENEOUS GAS*
(COUPLING WIDTH)

V. Furtsev and A. Vlasov

1. Introduction and Summary /378**

The problem of the broadening of spectral lines in gases due

to an increase in the density of the principal gas has long been

treated frequently in the literature from both the experimental

and the theoretical standpoint. It has been determined experi-

mentally that the broadening associated with an increase in the

density of the principal gas is considerably more pronounced than

that accompanying the addition of a foreign gas [1-31'. This /379

specific broadening of lines due to the interaction of identical

atoms has been named coupling width.

In order to explain coupling width in theoretical terms, a

number of experiments were undertaken which must certainly be

considered unsatisfactory. The purpose of this article is to

fill this gap and to provide a reasonable theory for the excessive

broadeningoof spectral lines which occurs when the density of the

gas from which they originate is increased.

The basic idea of most theoretical works on coupling width

that have so far appeared is based on the fact that when linear

1 In the last of these articles, Minkovski, while measuring the
natural width of the sodium D line at relatively low pressure,
notes a broadening of the line as a function of gas density.
See also the summarizing article by V. Weisskopf [4].

* Delivered at the colloquium of the Theoretical Section of the
Physics Institute of the Academy of Sciences and of the Scien-
tific Research Institute for Physics at Moscow State
University, March 3, 1936.

** Numbers in the margin indicate pagination in the foreign text.
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coupling occurs between two equivalent harmonic oscillators,

splitting of frequencies takes place, from which it is concluded

that the system of equivalent atoms experiencing dipole inter-

action is already absorbing or emitting in a certain region of

the spectrum [5, 6].

Holtsmark, in particular, has calculated the width of this

region with the aid of classical theory. He views the gas as a

system of N equivalent, immobile, linear harmonic oscillators

oriented in parallel which are linked by dipole interaction.

Such a system generally possesses N frequencies. Holtsmark has

calculated the mean square deviation in the frequency of the system

from the frequency of an unperturbed atom and also averages them

for all possible positions of the oscillators relative to one

another. The quantity v/A-7 obtained in this manner is equated

by Holtsmark with the width of the spectral lines. Frenkel [7]

has essentially repeated Holtsmark's studies in terms of quantum /380

theory and has arrived at a similar result. However, Holtsmark's

and Frenkel's ideas are not tenable and call for refutation.

Weisskopf [8] has subjected them to detailed criticism. We

would like to add the following to this criticism: First, in

considering the question of the broadening of spectral lines due

to interaction of the atoms, we may not replace the gas with a

model that consists of immobile, unidimensional, parallel oscil-

lators, since the peculiarities which are essential for the

problem to be studied are lost in the process; this can be seen

from our further consideration of a model of three-dimensional

oscillators in Section 5. Secondly,,Holtsmark's theory is not

satisfactory within the scope of consideration of the assumed

model: it yields a finite broadening of spectral lines even for

regularly positioned, linked oscillators, whereas no broadening

occurs in this case, but only a shift in the line, as Vlasov has

demons.trated. -exactly .[.9.]2..In.". order.f.or..the. fr.equency t.o appear

2 See also Section 2 of our article.

2



in the spectrum, it is not at all sufficient that it be inherent

to the system; rather, in classical terms, it must also be op&-

tically active.

For a gas in which the particles are experiencing irregular

motion and from time to time can pass one another at short

distance, we can assume that only those phenomena are important

for the broadening of spectral lines at a limited density which

occur as the result of the interaction between two atoms

precisely as they approach one another closely. This is the basic

idea of Lorentz collision damping, to whose correctness

Weisskopf [8, 10] referred for the first time with regard to the

case of a homogeneous gas -- in constrast to its consideration

as a system of coupled immobile oscillators. The pronounced

broadening of spectral lines accompanying compression of the , /381

principal gas indicates that it is connected with an interaction

between atoms at relatively long distance; thus it is quite

natural, in seeking a theoretical explanation of this broadening,

to attempt to consider only the dipole forces in the interaction

between two equivalent atoms. For this reason, Weisskopf replaces

the atoms with identical linear oscillators which interact via

the dipole fields and calculates optical collision diameter and,

from this, the broadening of the spectral line, which agrees

satisfactorily with the experimental data. To be sure, Weisskopf's

consideration of collision between the identical atoms is not

quite correct. Without sufficient grounds, Weisskopf applies the

correct idea of the mechanism of collision damping for non-

extinguishing atoms of different types to collisions between

identical atoms. We know that the broadening of lines due to

collisions occurs not only when the train of waves emitted by the

atom departs after collision (extinguishing gas), but also when

a change in the phase of oscillation of the excited atom occurs

upon collision (nonextinguishing collisions). In order to cal-

culate the phase shift accompanying collision, we must use the
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change in frequency Aw of the emitting atom which results from

interaction with foreign atoms, and integrate over collision time;

if we set this integral equal to 1, we can evaluate the magnitude

of optical collision diameter theoretically. In place of Aw,

Weisskopf arbitrarily uses the difference between the frequency of

one of the normal oscillations of a system of two dipole-linked

identical linear oscillators and the frequency of the isolated

atom for collisions between identical atoms. It is clear that

this calculation is based on a misunderstanding. Aw is in

essence the change in frequency of the emitting atom, the light

from which is analyzed by the Fourier method. Due to degeneration,

however, what Weisskopf has used in its place has nothing at all

to do with this matter. Lenz [11] 3 also commits a similar error /382

following Weisskopf in a later article.

The idea that when two atoms of the same type of which one

is excited and the other is not excited collide, the oscillatory

phase of the excited atom changes, does not correspond at all to

reality. The thermal motion of atoms can be considered slow

relative to the intraatomic movement of electrons. If we there-

fore imagine that an excited atom passes close to a similar atom

Which is, not excited, then the energy of excitation will jump

from one atom to the other due to the collapse of the energy level

under the influence of the dipole energy of'*' interaction4 ; ex-

pressed in classical terms, the amplitude of the emitting atom

will change. Depending upon the distance at which the atoms pass

one another, the excited atom gives up a portion of its energy or

all of its energy to the other atom, or a repeated transfer can

3 This error has been repeated time and again until recently, e.g.
in the summarizing article by Margenau and WatsonL[12].

4 It must be said that the question of the transfer of energy of
excitation between atoms has long been covered in quantum theory
by Kallmann and London, but without going into the broadening
of spectral lines. See [13] and [14].
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take place. It is clear that in the case of ordinary types of

excitation, when only an infinitesimal fraction of all atoms are

excited, the emitting atom will pass unexcited atoms almost

exclusively and will generally lose itS energy, and its amplitude

will decrease more rapidly than during natural decay. We can

describe this phenomenon in part as follows: because the

emitting atom moves in the vicinity of unexcited atoms of the

same type, the motion of the electron in it experiences an addi-

tional "friction." This friction is also one of the causes of the /383

broadening of spectral lines during compression of the principal

gas. Aside from this friction effect, which is caused by atoms'

passing one another at relatively long distance, i.e..in those

cases in which energy can jump in only one direction -- from the

particular atom -- still another exists which occurs at shorter

ranges (collisions), in which case a more considerable change in

the motion of the electron is produced. Here, amplitude can change

not only in magnitude but also in direction. Consideration of

these short-range collisions causes another component of spectral

line broadening which approaches the former in order of magnitude.

These two components are additive.

In the work covered by this article, the broadening of spec-

tral lines which accompanies compression of the principal gas

.was calculated on the basis of the above considerations. For the

form of the line, this calculation yields a dispersion-like

distribution with a width that is proportional to density and is

independent of temperature. The values found theoretically for

the magnitude of broadening agree satisfactorily with the em-

pirical data. In our discussion, we shall restrict ourselves to

the case of light emission. In Section 3, the atom is replaced

with a model consisting of a three-dimensional oscillator whose

motion is described by the laws of classical mechanics; even this

mode of representation essentially yields correct results, as was

also to be expected in the case of the question which is being

debated. In Section 4, the quantum theory of broadening is
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presented; it yields a result whose difference from the classical

result consists of a meaningful refinement. Finally, considera-

tions are presented which make it possible to at least quali-

tatively cover the effects of the emission which occurs during

collision upon the form and width of the line,

2. The Effect of Coupling, Demonstrated with the Example of a /384
Linear Chain

The content of the preceding paragraphs does not represent

anything really new. It is meant to show that the presence of

coupling between similar oscillators and thus of frequency

splitting is not enough to cause the broadening of a spectral line.

The physical reason for this is that the frequencies which occur

are the frequencies of the system's normal coordinates. Thus

the corresponding oscillations of the individual dipoles assume

certain phase relationships. This leads to interference in the

emissions of the individual oscillators and, consequently, to the

disappearance of several frequencies in the spectrum and, in the

case of a regular distribution, for example, to the complete

extinction of all except one frequency. In order to demonstrate

this, we consider -- for the sake of simplicity -- an infinite

linear chain of similar harmonic oscillators which are located at

equal intervals from one another and are linked by dipole inter-

action. If we take the straight line of the chain as the

direction of oscillation, we then have

2e

for the force which acts upon the kth oscillator from the kth,

where IRk - RtI is the distance between the oscillators being

considered and exk is the electrical moment of the kth oscillator.

The equations of motion are represented by the infinite

system

6



(1)

where wo is the cyclic frequency of the isolated oscillator, m

is the mass of an electron, and

... 1 )m l R -- lH (3'

We seek the solution to system (1) in the form:

xk = Ake iwt

By substitution, we obtain the system of equations /385

((')u9 - Ai Nxakn A. r
9l (2)

for determining Ak. If the oscillators are regularly distributed,

system of equations (2) permits exact solution

If we substitute this into (2), we find that w and p are con-

nected by an infinite number of relations of the form

.,--.w- a = ak.(,'''P:,rkP,; I=0 , -- 1,- '2...±- -
k:-l

Due to the regularity of distribution of the oscillators, how-

ever, all become identical, since the sum on the right side of

these relations does not depend upon the number k and, if we
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collect terms with the same modulus :Ik - kI = s by pairs in the

sum, yields

UJ-- k N (7 v -1 S : d
- (3)

where d indicates the distance between neighboring oscillators.

The solution to the infinite system of equations (1) will thus be

represented in the form of traveling waves from oscillator

elongations. Relation (3) yields the dispersion law for these

waves. We see that the system under consideration possesses an

unlimited multiplicity of frequencies, which are determined from

equation (3) for each p; Iv'I can apparently range through all

values from zero to a certain maximum which depends upon d.

Let us consider the radiation from the chain and look at the

radiation which corresponds to the dipole wave of a particular

wave number. In this case, the electric moment of the kth

oscillator will have the value

If we calculate the intensity of radiation at a relatively large /386

distance from the chain (Fraunhofer's case!) in the direction

which forms the angle 0 with a perpendicular to it, then the

phase of radiation from the kth oscillator will be at a distance

from phase k = 0 which -- if we disregard phase shift pkd -- is

increased by the amount

kd sin 08 - = zkd sin 8

8



where x = w/c, and c is the velocity of light. Light excitation S,

which is being sought, can be represented as

k-c

Since X > d for visible light, we can convert the .sum int6.

the integral

S const-ew~t f e-i:I:+xsin Ndz const-ei-I + sin) )

where 6 represents the Dirac 6 function, which differs from zero

only at the point p + xsin e = 0. We thus find that, out of the

"continuum" of possible frequencies for the chain in the optical

spectrum, only one occurs, for which

-P + x sin 6 = 0.

We find the magnitude of this "optically active" frequency by

substituting the value of p from (4) into relation (3). In the

case of observation perpendicular to the chain, 8 = 0, the condi-

tion for optical activity will simply be

P = 0

and, for the optically active frequency,

0 . ak1
L4 (5)

which coincides with formula (9) in the article cited'"[91. ::Since

X > d and as decreases rapidly as s increases, the frequencies /387

emitted at other angles will also differ only slight from that

shown in formula (5).
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Thus the presence of a dipole link between the regularly

positioned oscillators does not produce a broadening of the lines,

but only their displacement, the magnitude of which is determined

by formula (5)s . As the calculation which we made with the aid of

perturbation theory shows, even just small fluctuations in the

distribution of atoms in the chain, which occur as the result of

thermal motion, produce no broadening of the line, as a first

approximation. Consideration of the three-dimensional case like-

wise presents nothing that is essentially new 6 . For an explanation

of line broadening in a gas, it is therefore more correct not to

proceed from the consideration of a system of immobile atoms, but

rather of atoms which are experiencing ',random motion, and to

take only those phenomena into consideration which occur as they

approach one another.

3. Classical Approach

We now assume the task of calculating spectral line width

for radiation emitted by a homogeneous gas. This radiation is

studied by - first passing it, for example, through a Nicol

prism whose plane of oscillation lies parallel to the z-axis. We

neglect natural decay and the Doppler effect here, and concentrate

on broadening as a function of gas density.

Let us assume that the line being considered corresponds to

a transition of the atom to the ground state. We shall conceive

of the atom itself in the form of the classical model of a three-

dimensional harmonic oscillator of cyclic frequency wo. Let us /388

proceed from the assumption that the excited atom moves within

s In the case of absorption lines, the shift indicated by formula
(5) corresponds to what is obtained from-the Lorentz-Lorenz
formula for the complex refractive index. The possibility of
finding it experimentally has been covered in detail by
Weisskopf [4].

6 Cf. [15]
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the vicinity of the remaining atoms, and we study its radiation.

In addition, we shall neglect gas kinetics collisibns, i.e. those

collisions which appreciably alter the motion of the atom, since

they are relatively rare. We shall imagine the atom to move

linearly and uniformly at velocity v. We shall first study the

effect which the movement of the atom past another, unexcited atom

has upon electronic oscillation. Let the unexcited atom be

located at the origin of the system of coordinate axes x,y,z,

and let xl,Yl,zl be the coordinates of its electron. and

x2,y2,z2 be the electron coordinates of the excited atom in the

system, which moves with it and parallel to the first system. If

the distance R between the atoms is considerable, relative to their

size, we can then expand the potential energy due to forces of

Coulombic interaction with respect to powers of xl/R, yl/R, ... ,

z2 /R and restrict ourselves to the first nonoscillating terms;

this yields the familiar potential energy expression for dipole

interaction, which reads as follows in our coordinate system:

e-

- R (xCy Cos 2 eos c .rz :os X Cos: U o CO; 
[. CS -  (6 )
yZ , cos cos --- :Z ,rcos cos ~--.:, cos; cos ~). I

Here, e is the charge of an electron and a, ,y are the angles

between radius vector R and the coordinate axes.

The equations of motion for the electrons of the first and

second atoms will assume the following form, taking interaction (6)

into consideration:

., ' .[(1 -3cos ) -::cos 2 co Py.U -3- cos 2cos - ] =1
y, t ,l i (1 - 3 cos:)) y,-2 3 cos Cos : - 3 'os ~ -os 2.r]= ,,

-u -. [(1 -- : ) cos;) :,-:3cos; cos z - : os Cos 2yJ =
Y.r. [(1 - 3cos )x Y-- 3 COs cos ,. - 3 Cos 3 cos :, = 0

y., i .(-3cos,)y, -3cos cos , -3 Cos- Cos = (7)
: .+ ,- [(1 -- 3 cos-):=, -- 3 cos; :osx, - :3 cos-; cos y,]2  I
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where we use the abbreviation /389

e2

and m is the mass of an electron. In these equations, a,a,y and X

are given time functions. Since the velocity due to the thermal

motion of the atoms is low compared to the intraatomic motion of

electrons, we can assume that these functions change only slowly

with respect to the inherent frequency of the change in coordinates.

To be sure, the change in these parameters due to degeneracy, of

the system is not adiabatic in Ehrenfest's sense, so we cannot

apply the methods of solution which are usual in these cases; we

therefore employ the method of successive approximations to solve

system of equations (7). The terms which express coupling in

this system, i.e. those terms which contain X, are small; thus we

can transfer them to the right side and substitute the known

approximations for the sought functions into them. For the Oth

approximation we use'

Z(1() - = 20) !112 -1

and

If we substitute these values into the terms containing X in

equations (7) and then solve them, we can obtain the functions

7 For the sake of simplicity, we assume an excitatibn mechanism
here in which the linear mode of oscillation bf the electron
is excited.
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being sought as a first approximation8 .

I /390

x ( I 3 A cosacos - dt.sinwt

t

3A = ...4 f).cos cos dt.sif t (8)

0
s*

.-,= _ (1-- cos:2 )dt.sinwot2wo

* 2, = y,) = ; ') = A coso,t

8 Solutions (8) are a generalization of the resonance formula for
the case of a force of slowly varying amplitude. They can easily
be obtained on the basis of the following considerations: let

nl satisfy the oscillation equation with the right member

Given starting conditions i(O) = n(0) = 0, then its solutions
(for example, see [161) will be

t

( = .'. ( sin -, (t - x) d-; (A)
0

when N(t) = a(t)cos wo t , and a(t) varies little during one
period, we can rewrite (A) approximately as follows:

t t

o 1
0()= sin !fo 1( I + cos2w)d-os t (r) sin 2u,. (

S '(+l) T (k+l)T

d-+ d + r tos2w,:ih]-
k kT kT

- cos t= ) sin 2 od ;.
kT

if we set T = 2T/wo, for example, and assume that t > T --
neglecting the small terms -- we finally arrive at the formula

d i-) sin wj I1
k
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These solutions show that oscillations of the unexcited atoms are

induced in the first approximation.

Let us calculate the state of motion which the electron

experiences initially in theounexcited atom after the emitting

atom has passed it. We shall at first limit ourselves to passing

at long ranges. What this refers to will become clear below.

The calculation of higher-order approximations for the :solutions /391

to equations (7) shows that only in the case of oscillation

amplitudes do changes result that occur in the form of rapidly

decreasing series; thus the amplitudes xl,Yl,z1 do not change in

the second approximation, for example, and the changes which

occur for them will be only third-order, fifth-order, etc. We

therefore use the solutions in the first approximation from

formula (8) for passing at long ranges. We let al,B 1,Y1 be the

angles between the direction of thenexcited atom's path and the

coordinate axes, p the perpendicular which is dropped from the

unexcited atom to the direction of motion, and a2,82,Y 2 the

angles which it forms with the coordinate axes. In order to

determine the amplitude of oscillation of the electron in the

initially unexcited atom, we assume that the atoms interact

during the course of time T, interaction beginning at time t = 0,

when the emitting atom is located at a distance of -vT/2 from

the base of the perpendicular p. From formula (8), amplitude,

e.g. xl (1 ) after a pass will appear as follows:

S f cos2cosdt (9)

On the basis of elementary analytical geometry considerations, we

have

14



cos= os= t - ) cos 2,

P Cos , v(t- )cos 3,
cosi = -- R (10)

(10)CO Cos V; (I- -) os (,
R

R = .2 0 v (t - 1 ).

If we substitute these values into (9) and introduce the new var-

iable of integration t' = t - (I/2)T, we then obtain

() : 3A. e' (jcos 2. + ct'cos 23)( cos t, + it' s 
T-dt (i +)

-- .. (11)

Analogous expressions are also obtained for Y(l) and for Z(l) from /3921 1
(8). In these expressions, we can set T equal to m. The

resultant integrals can then be evaluated analytically, and we

ultimately obtain the following formula for the oscillation am-

plitudes of the .electron in the initially unexcited atom after an

excited atom has passed it at range p:

2 41
e j, -  .4 "( COS 2.os _ -- 1-CnS - OS "h)

-e. (2 cos , cos;2 cos cos-;)

Mw... - v (12)

__.e (2COs'-27--coS'-2 -)

The magnitude of transferred energy a can easily be determined

from these equations; for this purpose, we must square the am-

plitudes and add them after first multiplying them by m 2 /2.

If we do this and apply the condition that v and p be perpendicular,

we obtain

e' 1
z= -- sin"1 *E,

(13)

15



where E = m 2A2/2 represents the osCdliatory energy of the electron

in the passing excited atom. It is interesting to note that E

is a function of yl, i.e. of the angle which the direction of the

relative velocity of the atoms forms with the direction of

polarization of the light emitted by the atom.

Formula (12) for the amplitudes can be used for ranges down

to those at which the entire energy can jump to the unexcited

atom. The equation

S= E (11)

gives us the minimum value po down to which we can still describe

path range as long. From (13) and (14), we have /393

)0 e (15)

where we have replaced sinY 1 with its maximum value 9 .

Thus the emitting atom will impart energy e as given by

formula (13) to the unexcited atom at a range which is not very

short. This energy is transferred essentially during that time

in which the excited atom is located close to the base p of the

perpendicular dropped from the unexcited atom to its trajectory.

We can therefore take the following approach in order to

9 A direct evaluation of the higher-order approximations in the
solutions to equations (7) shows that even for passes at range

Po, the next change in amplitudes xlYl,z1 is no more than 20% of
the first approximation values from equations(8). In place of
siny 1 we have taken its maximum value, since we can use the
first approximations only if they remain small for all values of
t, not just for t = -; our formulas (12) satisfy this. For

Y1 = 0, for example, our formulas (12).yield values of zero
down to p = 0 for the first approximations, though these approxi-
matibns are not monotonic functions of time in this case, and the
value po from the maximum for a yields a value on the same order
as formula (15).

16



calculate the entire energy loss that occurs from a long.passing

range as the emitting atom moves through the homogeneous gas over

a distance :.As = vdt: We sum the energies obtained from formula

(13) for all of the atoms which are located farther than po in

the layer As thick standing perpendicular to the trajectory; if

N is the number of atoms per unit volume, we then obtain the

following for energy losso0 :

e' 
.(IE.- (16 )

or ultimately, from (15): /394

dE = -N, sin21 Edt.
mIllw0

If we average this expression over Yl 1 and integrate, we

obtain

E = Eoe- 'to,
(17)

where Eo is the initial energy of the excited atom, and

,, 2= Ne' (18)

J Strictly speaking, all of our calculations are correct as long
as the distances being considered are short compared to the
length of a light wave. It can easily be seen that this is
satisfied for the cases which are of interest to us, since the
)values po obtained from formula (15) are on the order of 10-7 cm.
The infinite limits of integration in integrals (11) and (16)
do not come under consideration, since the integrand decreases
sufficiently rapidly.

~1 See Supplement I.
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It can be seen from equation (17) that even in the absence of

collisions, a decay of electronic oscillations occurs in the

emitting atom. In order to determine the width of the spectral

line caused by this decay, we must halve (18); we thereby obtain

the following for the sought half-value width 6~ (the distance

from the maximum to the value at which intensity drops to one-half),

expressed in the scale of cyclic frequencies:

e

3 3w, (19)

Stated exactly, we obtain the width of the Fourier expansion

for oscillations of the oscillator under consideration in this

manner; for line width, on the other hand, we need the expansion

for radiation which in our case is obtained from the radiation of

the initially excited atom and the radiations from those atoms

which have received energy from it, since the damping mechanism

taken into consideration does not provide for conversion of the

light into any other form of energy. To be sure, we cannot con-

sider this repeatedly excited radiation to interfere with the

original radiation; this can be seen immediately for its x- and

y-components; as far as the z-component is concerned, it too

will not be coherent, due to motion of the atoms, since as the /395

discussed decay begins to become appreciable at low gas density,

the atom can cover a distance, prior to finally emitting its

light, that amounts to a multiple of the light's wavelength. We

can thus assume that the width of the spectral lines coincides

with the width of the Fourier analysis for oscillations of the

oscillator which was initially excited. The transferred energy

must, in the case of absorption, be the cause of additional light

dispersion, which will probably be operant only in the region

near wo (selective scattering).

In order to arrive at a correct result, we must apply a

correction to the classical calculation: we must multiply the
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quantity e2 /m by, oscillator strength f; this is obtained directly

from quantum theory (see next section).

Thus the width obtained, 6r = f6g, which results only from

long path ranges, already has the correct value and corresponds

in order of magnitude to experimental observations. In addition,

however, we also have short pass ranges, i.e. those at which the

distance between atoms is less than po, which is determined by

formula (15); we wish to call these collisions. The effect of

collisions on the width of the spectral lines cannot be determined

just by the energy loss, since the oscillatory amplitude of the

electron can change not only in magnitude during them, but also

in Sign, as can be seen from the calculation of the next higher-

order approximations for solutions to system of equations (7).

The change in amplitude is a function of the distance at which the

atom passes and, since the value of this distance within po is

random, we can assume that positive and negative values(of ;,,

amplitude which do not exceed their value prior to collision in

absolute magnitude are equally probable after collision. In

other words, we expect a discontinuous change in amplitude at the

instant ofc.cllision such that its mean is equal to zero. Such /396

a concept for the collision mechanism leads to results which are

analogous to the ordinary Lorentz 2 theory of collision damping,

i.e. it yields the same line width and form. Our approach allows

us to theoretically determine the principal parameter in

Lorentz's theory -- optical collision diameter; in our case,

optical collision diameter will be the quantity po given in

formula (15). For the line width due to collisions we obtain

S" e (20)
U 

IIw o

12 See Supplement II.
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By combining (19) and (20). and multiplying by f, we obtain the

final expression for the width of the spectral line in a homoge-

neous gas:

S ,(21)

This formula differs only by 'the coefficient 8/3 from the

expression which Weisskopf [4] has already compared with experi-

ment. Weisskopf found here that agreement with experiment is

satisfactory. Our formula gives a value which is approximately

three times as large for line width than does Weisskopf's formula,

and this is a correction in the right direction -- to say nothing

of the fact that the conclusion indicated by Weisskopf's 'ormula

is untenable -- since the values indicated by Weisskopf are in

all cases smaller than observed experimentally. To be sure, we

can still not use our formula to explain the pronounced broadening

of the mercury line observed by Ortmann and Pringsheim [2];

according to the measurements by these authors, the width observed

experimentally exceeds the theoretical value given in formula (21)

by a factor of approximately five. The ideas developed later

(in Section 5) show that we must consider expression (21) to be

the lower limit for the value of spectral line width in a /397

homogeneous gas. We can therefore assume that Ortmann and

Pringsheim's results do not contradict the theory which has been

developed. It should also be noted that the dispersional distri-

bution of line intensity occurs, when the friction effect is

taken into consideration, in the case in which oscillation

amplitude falls off strictly exponentially. In reality, however,

the exponential decrease in amplitude is somewhat deformed,''ds

can be seen from the physical cause of friction; we can probably

relate this to the slower regression in intensity observed ex-

perimentally by Minkovski 13] than in the case of the dispersion

formula, since these deformations must have a more pronounced
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effect on the intensity of those frequencies which are far from

wo (on the "wings" of the line). It is precisely at this point

that Minkovski also made his measurements. To be sure, it is

difficult to evaluate the value given on the above-mentioned

grounds, even in order of magnitude, in order to be able to state

with certainty that the experimental observations can be explained.

We now go to a quantum theory consideration of the problem.

It provides a result which is analogous to the classical theory

which has been discussed and thus serves as confirmation of the

correctness of the results obtained by classical means.

4. Quantum Theory Approach

We know that the natural width of spectral lines is caused,

in quantum theory, by the uncertainty of energy terms which

result from the finiteness of the lives of excited states. In the

case of an isolated atom, the life of the excited state is deter-

mined only by interaction with the radiation field. In our case,

however, we have not only the atom's interaction with the field

but also an interaction with other identical atoms, which causes a /398

shortening of the life of the excited state and thus produces an

additional uncertainty in the terms. At a sufficient gas density,

Uncertaihty ..in energy terms due to the second cause will pre-

dominate. Thus we can neglect the broadening of energy levels due

to the loss of energy to the radiation field, and we need consider

only the transfer of energy to surrounding atoms. Accordingly,

we can approach the solution of this task as follows: Without

considering decay due to radiation, we shall have to determine the

change in the probability amplitude of the excited state with time

due to the presence of a link with other atoms. Due to the speci-

fic degeneracy of the problem (equivalent atoms), the probability

amplitude of the excited state changes -- even with limited

coupling (dipole energy of interaction, long pass ranges) --

to a much greater degree than due to the presence of a coupling
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with the radiation field. If we substitute the value found in this

manner for the probability amplitude of the excited state into

the equations of Dirac's radiation theory, which yield a change in

the probability amplitudes of both the atomic states and the

radiation field, we can determine the latter. The distribution

of probability amplitudes over the frequencies of oscillators in

the radiation field will also yield the width of the spectral

line.

Let us determine the change in the probability amplitude of

the excited state for the case in which the emitting atom passes

dlose to the unexcited atom. We shall describe the motion of the

atoms themselves classically and restrict ourselves to a considera-

tion of long pass ranges only; their exact determination, in

analogy to the classical, will also be given below. For the

energy of interaction we use the dipole energy of interaction given

in formula (6) for this reason. As the result of atomic motion,

the energy of interaction will not be constant, and its dependence /399

upon time will be determined from formula (10). In further dis-

cussion, we shall limit ourselves to the case of atoms with a

spherically symmetrical field. For the additional states, we

assume an s-state for the first (unexcited) atom and designate

thL amplitude of its wave function nOO(1), where the subscripts

are the quantum numbers n,k,m. For the second, emitting atom,

we assume a wave function of the form

S,,,, (2) c oo (2), (22)

corresponding to the polarization of emitted light along the

z-axis.

Since the possibility exists of an exchange of energy between

the individual atoms, the system under consideration possesses

six-fold degeneracy, due to the three-dimensional degeneracy of

the excited state of two identical atoms. As a result of the
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slowness of the atoms' thermal motion, the transitions will

essentially take place between the isoenergetic states. We there-

fore seek the wave function for an arbitrary time during passing

in the form of a linear combination of the functions:

'" (1, 2, t) = {a (1) 9,,00(1) '0,,Io (2) + a. (t) f,oo(1) ,n1 (2) +

+ a, () ,,oo (1) ,s ,-t (2) + b, (t) jwo (1) ,,oo (2) +
.E,+Em

+ b.(t) .1(1) ,,'oo(2)+ b3 (t) ' ,-i (1) Jnoo(2)} e *  + (23)
2En  /

i 2Et /

c, (t),9,,oo(1) ,,oo(2)e A /

If we substitute (23) into the wave equation

I(1)+ 11(2) + (1, 2, /) it (l ,2, )= 0

and take into consideration that the mean values of the coqdinates

of the electrons are equal to zero in the unperturbed state, we

then obtain the system of equations for determining the coeffi' /400

cients as functions of time in the conventional manner:

_ Y 00; ul0 - , 0; nll G - nrO; m1-1 3
dbi an, arM1 -"M, o - s, ;, a

dbill m; fo a; n00 a I rll; n00 3

h ; M a-,O.1-1 a

i-- lnoom b b2- too;.,o b
db O , I nOO a l ,a o ,1-1; OD)

__ 00;l u ll nO , +ll 0; r all ,dt
dt pn,, G b ,--O a+ r.- 9,

YnG3 OD;m11 MO~a- 1u0;sl-1
.da, ,oo- ,.I V,,. . . .-I " ,. ..-.

V-ml0=o 0 b1  Vani o b I n1-I; mO b3

13 h refers to Planckts constant divided by 27.
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where the coefficients for the amplitudes are matrix elements for

the energy of interaction, e.g.

VMW." t o (1) oo (2) V(1, 2, t) noo(1) ,o(2)d d ..

We shall solve system of equations (24) by the usual method of

successive approximations,, taking the low energy of interaction

into consideration. As in the classical approach, we also assume

here that interaction begins at time t = 0, at which the emitting

atom is at a distance of -vT/2 from the base of the perpendicular

p. The amplitude, values for this time will be

a (0)= a; a2(O) =O; a (O)0) 0;

b, (0)= 0; b, (0)= O; b, (0) = O; ce (0) = c.

For the first approximation, we obtain the following at time T:

a,,= a; a= 0; a - 0O;

b! = hI , nmlO dt; b = VO; mO d
b2  f

0 0 (25)
a r1-; n d

b3 aV n ,mlo dt.

0

If we use the expression for the matrix elements of the coordi41-A /401

nates,

(no00o y i1 1) = (u00 I I .1 - ) = -- 2 r ,
(nooYlm11)=(Oylml--1 )=-.2 T N.,,

(n11 Y I n00)= (im 1--1 j jy. OO) = /'2rm

(oo00 z I mlO)-- (mi0 Iz io00) 3 r,,,.
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where rnm is the matrix element for the radial part of the wave

function. which corresponds to the transition between states with

principal quantum members n and mand.isubstitutelthe matrix elements

for the dipole energy of interaction, we obtain

a, (i (1 - 3 cos 2' )

0

b. b a 31/ - -e (n0zjml0) OS(COS--i'COSP)dt.
" ih 2 R

0

If we use formula (10) and integrate, then as T + m we obtain

a 1
b, = 2e2 (n00 1 z I m0l) (1 - cos ,-- 2 cos 7,),

b= b. = - a 0 (n01: I l0) [cos 71 (cos- i cos l)-t
ih VP2

+ 2 cos 7T (cos a 2 - i cos sP)].

For the sum of the square§of the moduli of the probability

amplitudes we have

i b -! -1 b2  2 - b, 12 = ( m1_1l11)4.

(26)

The change in the amplitude of the excited state during the time /402

of passing will occur in the second approximation. If we con-

sider the normalizing condition

and the fact that the weighting of the state n00O(1)nOO(2) does

not change, we obtain the following expression for the change in

the square of the amplitude of the excited state:
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A] aja- = I alj 2- jai- =-(1 b 2 +-- b r +, bS )
4e4 -)4

=,- a sin- , (n00 jz) .

If, in place of the matrix element, we introduce oscillator

strength, which in the formula

21 -
f[un 2  ",,(nOO 01 z m10)2 (27)

corresponds to the m + n transition, we finally obtain

Alla = -- al' e4 .7 1 .Ala=-a ,, , sin2  s (28)

Let us determine the total change in probability due to the

successive passes of the emitting atom close to the unexcited

atoms. We can use expression (28) up to Alal 2 = la12; this

equation gives us the minimum po up to which we can still con-

sider pass range to be long (cf. the classical approach), i.e.

e2  1
Po- fn P - (29)

The number of atoms which appear within 1 sec and lie between

p and p)+ dp is equal to 2rpdpvN (N is the number of atoms in

l:clm2 ). We obtain the total change in probability during this

time by integrating with respect to p from po to m:

dial2 -a ,2 sin ,,. jptdpvN=

dl e 2  /403

= - a 6I fnmNsinh T
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and, after averaging over y71, we obtain

a1 a= ao2je-:; :'o= - mN. / (30)

It can be seen from this that the excited state has a finite life

which depends upon gas density.

We use Dirac's theory of light to determine radiation.

If we designate the amplitude of the probability that the atom

will be in state n and the field will be in the state determined

by quantum numbers N1N2 ... as an,N 1N2... , the equations for

determining the amplitudes will have the following form:15

ih E,, '. . E,1.)

n, N,N,...(31

where H'' j:, is the matrix element for the energy of inter-

action between the atom and the field. If we assume that the

atom is excited at t = 0 and the energy of the field is equal to

zero, i.e. that am,00...0s0... = 1 and all remaining an,NlN2...

= 0, an appreciable weighting will occur with time: first of

all, on the excited state in the simultaneous absence of quanta

in the radiation field (am,00...0s0...); secondly, on the un-

excited state, likewise without quanta in the field (an,00-.:.0sO...);

and, thirdly, on the unexcited state in the simuitaneous presence

of a quantum of type s (an,00...s0...), the frequency of which

must be close to the frequency corresponding to the m * n

transition. The latter will also determine the emission spectrum

which is of interest to us. If we neglect the remaining /404

14 See Supplement I.

'S For example, see [17].
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amplitudes in system of equations (31), we obtain the following

equations for determining the probability amplitudes of the

excited radiation field:

dan, OD........ (f 0, -..;380...

idt m.oo...o,o.. ,,, ... ( e

where wnm is the frequency of the m n transition, and ws is

radiation frequency. If we substitute the expression found above

and the expression from formula (30) for the probability amplitude

of the excited state of the atom as a function of time 6 , i.e.

a o,,, o... (t) = a () = e 2

into the right member, we obtain the following for the amplitudes

being shought:

(1) o... c 0.
H.. o. 00... I.0... -o-h '. - 2fm,, - 1 (32)

As t + m, the atom goes to the ground state and a certain probabil-

ity for excitation of the field occurs; the probability distribu-

tion for energy in the radiation field at this time, by frequency,

will be:

const
I()= const I a,, oo... ,o... (co) co s

-" (33)

16s It can easily be seen from equation (24) that the phase of the
excited state is independent of time in the approximations
considered.
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which agrees with the emission spectrum of the decaying classi-

cal oscillator, for which wo = .nm. For line width, we obtain

the expression

2 3 (34)

which differs from formula (19), derived from classical considera- /405

tions, only by a factor of fnm.

We had assumed here that the line considered corresponds to

the atom's transition to the ground state, but we can easily see

that it need not necessarily be so. The effect mentioned will

also have an influence on the width of those lines which corres-

pond to the transition between two higher levels if a transition

to the ground state is not forbidden, at least for one of them.

5. Concluding Remarks

The ideas developed, based on a consideration of radiation

from one atom, are applicable only to gas densities which are

not very great. At higher density, when the "free path time"

of the atom becomes comparable to "collision time," a radiation

also becomes appreciable in the spectrum that occurs within the

time of principal interaction between the atoms. This radiation

may no longer be viewed as if it propagated from one atom; rather,

we must study the radiation from the diatomic system which forms,

as a whole. It does not appear possible to us to take the

effect of the radiation on ithe form and width of the spectral

line during collision time into consideration exactly, so we

limit ourselves to a qualitative study of this effect. Strictly

speaking, we would have to know the exact form of the function

that describes the light wave in order to find the emission

spectrum, and we would then have to resolve it into a Fourier
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integral, Since this is impossible,-,we must bel satisfied -- as

is usually done in such cases -- with the qualitative determina-

tion of frequencies that are emitted during collisions. If we

assume that the intensity of these frequencies in the spectrum is

proportional to their lives, we can draw a number of conclusions

regarding the form and width of the line even at relatively high

densityf.

Thus at relatively high density, the emitting atom will often /406

be close to another atom of the same type; in order to study the

radiation which occurs here, we can consider these two atoms as

a molecule in which the levels which result upon the dissociation

of an excited and an unexcited atom are excited. The wave

function for such a molecule can, in the Oth approximation, be

formulated in the form of a linear combination of products of

the functions for the isolated atoms. We calculate the frequency

of the light which is emitted by such a molecule, taking the

dipole energy of interaction between the atoms generating it into

consideration as a perturbation. We can neglect the degeneracy

of the system due to electron exchange and take only energy

exchange into consideration; this is immediately permissible in

the problem under discussion. If we orient one of the coordinate

axes, e.g. C, along a line connecting the atoms, we obtain the

following form for the formula for the dipole energy of inter-

action (6):

V' e
V =(35)

The excited molecule can be in a Z. or a H state, the latter

being doubly degenerate corresponding to the two directions of

rotation. The eigenfunctions for these states -- they will be

17 For example, see [4].
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prominent precisely because of perturbation (35) -- can be for-

mulated as follows in the oth approximation:

W- ,, o(1) ,, (2) + 1-,, 1 (1) o (2) iSV2

Here, nOQ(1), *m10( 2 ), etc., represent the eigenfunctions for

the first and second atoms, respectively, in each case. The

subscripts refer to the values of quantum numbers n, R and m of

the particular state"8 . Accordingly, the change in energy due to /407

perturbation (35) will be

f e f 1

Here, f is oscillator strength, which is determined by relation

(27). From this we obtain the emitted frequencies

18 The system being considered;< conSisting of two identical atoms
in a state at lowest energy, is not degenerate and is described
in the Oth approximation by the function nOO(1)mlo(2); the
next, first excited state, the only one in which we are inter-
ested, on the other hand, already possesses six-fold degeneracy;
if we calculate by the conventional method of perturbation
theory, with interaction energy (35), we find that this de-
generacy is partly eliminated, and symmetrical expressions (36)
are functions in the Oth approximation, as are the antisymmetric
expressions, although we did not take the latter into considera-
tion, since the states corresponding to them do not combine
with the ground state and therefore did not manifest themselves
in radiation.
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1 e H3 I
• = ;~ H1 ] [ (37)

e= -o + EUO , f

We can interpret these calculations classically as follows: If

we assume that the two similar three-dimensional oscillators are

separated by a distance R which is small compared to the length

of the light wave and that they interact with the aid of the

dipole fields in accordance with (35), then the oscillations of

the oscillators along similar coordinate axes will be linearly

coupled in pairs; oscillation 1l will be coupled only with 2,

(1 with (2, and n1 with n2. Each pair will possess two normal

frequencies which correspond to the parallel and antiparallel

oscillations. Only the parallel oscillations will be optically

active, while the antiparallel oscillations will not be operant in

emission, since no change in electrical moment is associated with /408

them. The frequency emitted as the result of oscillation On r

5 will be shifted toward the red, but those on , and n, toward

the vidlet; the magnitudes of the shift will also be equal in

the first approximation here, up to the factor f, which figures

in expressions (37).

Thus the radiation during interaction will result in a cer-

tain additional asymmetric broadening. To be sure, the asymmetry

will not be gross, for although the frequency shift in the red

direction is twice as large as that in the violet direction, the

statistical weighting on this shift is itself only half as great.

It seems ;to us that it would be impossible to say anything more

precise concerning the form and width of the line., It must be

noted here, however, that this peculiar "Zeemann'effect" (in the

sense that the degeneracy with respect to m is partly eliminated

in its case) has no little influence,due to the relatively slow

decreases in interaction forces with distance. We must therefore

consider our expression (21) to be a lower limit on the broadness
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of the spectral .'line in a homogeneous gas; this should agree with

experiment in all cases.

We note in closing that transferred energy e in our formula

(13) is a function of the angle which the direction of the

relative motion of the atoms forms with the direction of oscilla-

tion; we should also be able to find this asymmetry of cross

section experimentally, e.g. with a molecular beam. We hope to

be able to discuss this problem in greater detail elsewhere, as

well as the effect of the interaction of similar atoms on the

polarization of resonance fluorescence and selective scattering.

SUPPLEMENT I

Caiculation of Total Energy Loss' Resulting From a Large Number of
Passes

When the emitting atom passes close to an unexcited atom,

the energy lost is

e4 1

=E *p m S, I(13)

In order to determine the total change in energy which is caused /409

by successive passes, we imagine, for the sake of simplicity,

that all atoms, including the emitting one, move at velocities u,

which are equal in absolute value and randomly oriented or --

what amounts to the same thing -- that the emitting atom is im-

mobile, and the remaining atoms move all around the emitting atom;

a negative velocity for the emitting atom itself must be added to

their random velocities. The various passesjwill differ in range

p and the angle yl between the direction of the emitting atom's

electrical moment and the velocity v of relative motion. The

presence of motion on the part of the nonemitting atoms, too, is

important for the problem being treated, since it determines

averaging over y1. It is interesting that motion only on the part
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of the emitting atom in an environment of immobile atoms does not

Yield the required line width when only long pass ranges are

considered, The reason for this is that the intensity of radiation

is determined in this case primarily by the emitting atoms with

electrical moments oriented along the lines of passage (yl = 0),

for which, however, decay is equivalent to natural decay.

If the z-axis is oriented opposite to the absolute velocity

of the emitting atom, we obtain:

v = 2u cos 0

for the magnitude of the relative velocity of the other atom,'.

where e indicates the angle between relative velocity v and the

z-axis. The angles 0 and 5 of relative velocity v are connected

to the angles 0 and c of the absolute velocity of the unexcited

atom by the relations

0 = 6/2, ¢ = .

If we use a to designatei.the angle between the direction of the

electrical moment p of the emitting atom and the z-axis, we obtain

the expression

cos, C = cos a cos siil a sin E4 cos 4)

(38)

for the angle yl from the spherical triangle formed by (z:,v,p).

The probability that the absolute velocity of the unexcited atom

is in a direction between 8 and e + de, 4 and $ + de will be

sin 8 d8d
W (9, ) dady- 4 -

For relative velocity we then have, correspondingly,
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sin 20d d4'
IV (0, 4) dtdo = 2I

Since energy will essentially be transferred when the passing

atom is located close to the base of the perpendicular p, we shall

assume that all those atoms receive energy that cross the plane

which is perpendicular to their paths and contains the emitting

atom. The number of atoms which pass at a distance between p

and p + dp from the emitting atom in the directions 0 0 and D

during time element dt is

di = AIVW (84)) dEd42=Tpdpcdt = Nvdtpdp sin 20dOdO. (39)

For the total quantity of energy which is lost to the group of

atoms dn, we thus obtain the following from formulas (13), (38)

and (39):

dEI = E - - Ndt sin 28d I - (cos 2 cos0 +sin a sin 0 cos ).

We obtain the total energy loss for time dt by integrating

with respect to the three variables: from po to o with respect

to p; from 0 to 7/2 with respect to 0; and from 0 to 2r with

respect to 0.

Integration with respect to p and D yields

dE=- E N sin 28de 1- cos cos 0-- .2- sinPdsin2 dt.

If we use formula (15) for the lower limit of po and integrate

with respect to 0, we obtain

and, from this, 2 dE=-E N( sin== dt,

where E= Ep -,et,

S I=*2 u-m<o " L- )(l)
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Formulas (17) and (18), in which we had neglected the slight

dependence upon a, follow from the above.

Quite analogous considerations also result in formulas (30).

SUPPLEMENT II.

Determination 'of the Form and Width of a Line While Taking Long
Pass Ranges and Close Collisions into Consideration

According to our ideas pertaining to collision, i.e. for a

pass during which the distance between atoms is less than the

Po determined by the formula

" 'f,, / (29)

the amplitude of the oscillator changes discontinuously and some-

times has.pesitive, sometimes negative values after collision, the

magnitudes of which do not exceed absolute value prior to

collision. We therefore assume that the oscillator was not

oscillating from t = -- to t = 0, that it was excited at time

t = 0, and that it was then subjected to collisions at times /411

tlt2,...,tk,... , so we can write

z c= Ae os(o t+ 9) , tk < t < t+l .

The function z(t) determined in this manner can be represented

in'.the form of the Fourier integral

+00

/ ht)= g (w) e d
where -

( f _ (t)iwt?. (42)
0
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In order to obtain the sought intensity distribution in the spec-

trum, J(w), we must square g(w) and take the average, i,e.

J(w) = const ig(.)I.

From formulas (41) and (42), we have

!r (O)= Ai~t' ei'+,j-'o)t - t e- i dt=

- lk---Q tk

oo (, t -l_ . ) 1

I-
= 4 1 (43)

- i ( - 't ") fk + 
l t 

l
'- - -  

2 tk + i fk 4 - 1 -

_e - 2---~

I (U,, - 01+ P2 /

In the vicinity of the line, i.e. for the values of wo close to

w, we can neglect the second term in this formula; when we then

find l'g(w)1 2 and average it, we see that the terms withlthe

product AKAK vanish for k 3 k', due to the assumption made

regarding the behavior of amplitudes upon collision, so we can

immediately omit them and write

2±,'=d o i c o(w,, (414)

where k 
t
k+ -- k

refers to the time between two successive collisions. The

quantities Ak, tk and Tk are independent of one another; we can
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therefore average separately. for them; averaging yields a certain /412

constant for the first two quantities which is independent of w

and thus is of no importance for intensity distribution in the

spectrum. In order to average over Tk, we proceed by the usual

method. The probability that Tk lies between T and T + dT is

dw = -c- dr.

Here, To is the mean time between two collisions, given by

i (45)

Thus we obtain

J(w) const.Igia)P = (.onst.S, - e .e
"- - +

o

The integrals which occur here can be taken from tables. When we

evaluate them and make elementary transformations, we finally

obtain

W const
J (W) =

(-o +(D±_ I (46)

i.e. the dispersion distribution with width

Taking (45), (29) and (30) into consideration, we obtain (21) for

the width of the spectral line':in a homogeneous gas,

Strictly speaking, we would have to use p, which is given by

relation (40) (up to a factor of f) in place of po everywhere,

and later we would have to average with a (46). However, this
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results in a formula which is not immediately clear and which

yields a curve for the quantity J.(w) that deviates somewhat from

the dispersion curve only close to the center of the line and

could hardly have physical meaning. We can thus neglect the

small term which is a function of a or use its mean directly, as

has been done here.

In closing, we consider it to be our pleasant duty to ex-

press our most cordial thanks to Profs. I. Y. Tamm and M. A.

Leontovich for their attention to and interest in this work.
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